Analysis and Design of an Optimal Energy Management and Control System for Hybrid Electric Vehicles
نویسندگان
چکیده
This paper presents a preliminary design and analysis of an optimal energy management and control system for a parallel hybrid electric vehicle using hybrid dynamic control system theory and design tools. The vehicle longitudinal dynamics is analyzed. The practical operation modes of the hybrid electric vehicle are introduced with regard to the given power train configuration. In order to synthesize the vehicle continuous dynamics and the discrete transition between the vehicle operation modes, the hybrid dynamical system theory is applied to reformulate such a complex dynamical system in which the interaction of discrete and continuous dynamics are involved. A dynamic programming-based method is developed to determine the optimal power split between both sources of energy. Computer simulation results are presented and demonstrate the effectiveness of the proposed design and applicability and practicality of the design in real-time implementation. Copyright 2002 EVS19
منابع مشابه
A Novel Intelligent Energy Management Strategy Based on Combination of Multi Methods for a Hybrid Electric Vehicle
Based on the problems caused by today conventional vehicles, much attention has been put on the fuel cell vehicles researches. However, using a fuel cell system is not adequate alone in transportation applications, because the load power profile includes transient that is not compatible with the fuel cell dynamic. To resolve this problem, hybridization of the fuel cell and energy storage device...
متن کاملA New Framework for Advancement of Power Management Strategies in Hybrid Electric Vehicles
Power management strategies play a key role in the design process of hybrid electric vehicles. Electric Assist Control Strategy (EACS) is one of the popular power management strategies for hybrid electric vehicles (HEVs). The present investigation proposes a new framework to advance the EACS. Dynamic Programming method is applied to an HEV model in several drive cycles, and as a result, some op...
متن کاملA new control strategy for energy management in Plug-in Hybrid Electric Vehicles based on Fuzzy Cognitive Maps
In this paper, a new control strategy for energy management in Plug-in Hybrid Electric Vehicles (PHEVs) using Fuzzy Cognitive Map (FCM) is presented. In this strategy, FCM is used as a supervisory control such that the State of Charge (SoC) of the battery is kept in the acceptable range and fuel consumption per kilometer is reduced, in addition to providing the request power. Since this method ...
متن کاملOptimal power management of fuel cell hybrid vehicles
This paper presents a control strategy developed for optimizing the power flow in a Fuel Cell Hybrid Vehicle structure. This method implements an on-line power management based on the optimal fuzzy controller between dual power sources that consist of a battery bank and a Fuel Cell (FC). The power management strategy in the hybrid control structure is crucial for balancing between efficiency an...
متن کاملAntilock Regenerative Braking System Design for a Hybrid Electric Vehicle
Hybrid electric vehicles employ a hydraulic braking system and a regenerative braking system together to provide enhanced braking performance and energy regeneration. In this paper an integrated braking system is proposed for an electric hybrid vehicle that include a hydraulic braking system and a regenerative braking system which is functionally connected to an electric traction motor. In the ...
متن کاملOptimal Intelligent Control of Plug-in Fuel Cell Electric Vehicles in Smart Electric Grids
In this paper, Plug-in Fuel Cell Electric Vehicle (PFCEV) is considered with dual power sources including Fuel Cell (FC) and battery Energy Storage. In order to respond to a transient power demand, usually supercapacitor energy storage device is combined with fuel cell to create a hybrid system with high energy density of fuel cell and the high power density of battery. In order to simulate the...
متن کامل